List of publications where Dr. Abo-Hashema's articles have been cited (Number of citations is 390 - not exhaustive – Last update was in 2009):

Cited 12 times

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
<th>Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Transcriptional regulation of HMG-CoA synthase and HMG-CoA reductase genes by human ACBP</td>
<td>Vock, C., Döring, E., Nitz, I.</td>
<td>2008</td>
</tr>
<tr>
<td>Article</td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>--------------------------------</td>
<td>--------</td>
</tr>
</tbody>
</table>

Cited 277 times

1. Molecular mechanisms of alcoholic fatty liver
 Purohit, V., Gao, B., Song, B.-J.
 2009 *Alcoholism: Clinical and Experimental Research* 33 (2), pp. 191-205

2. Synthesis of spiro[chroman-2,4′-piperidin]-4-one derivatives as acetyl-CoA carboxylase inhibitors

3. Altered energy homeostasis and resistance to diet-induced obesity in KRAP-deficient mice
 Fujimoto, T., Miyasaka, K., Kovanagi, M., Tsunoda, T., Baba, I., Doi, K., Ohta, M., (…), Shirasawa, S.
 2009 *PLoS ONE* 4 (1), art. no. e4240

4. LRP1 controls intracellular cholesterol storage and fatty acid synthesis through modulation of wnt signaling
 2009 *Journal of Biological Chemistry* 284 (1), pp. 381-388
<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
<th>Journal</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD)</td>
<td>Musso, G., Gambino, R., Cassader, M.</td>
<td>2009</td>
<td>Progress in Lipid Research 48 (1), pp. 1-26</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>White Adipose Tissue as Endocrine Organ and Its Role in Obesity</td>
<td>Vázquez-Vela, M.E.F., Torres, N., Tovar, A.R.</td>
<td>2008</td>
<td>Archives of Medical Research 39 (8), pp. 715-728</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
<td>Journal</td>
<td>Page Range</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
<td>----------</td>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>16</td>
<td>The discovery of drugs for obesity, the metabolic effects of leptin and variable receptor pharmacology: Perspectives from β3-adrenoceptor agonists</td>
<td>Arch, J.R.S.</td>
<td>2008</td>
<td>Naunyn-Schmiedeberg's Archives of Pharmacology 378 (2), pp. 225-240</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Peroxisome proliferators-activated receptor (PPAR) modulators and metabolic disorders</td>
<td>Cho, M.-C., Lee, K., Paik, S.-G., Yoon, D.-Y.</td>
<td>2008</td>
<td>PPAR Research, art. no. 679137</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>The malonyl CoA axis as a potential target for treating ischaemic heart disease</td>
<td>Ussher, J.R., Lopaschuk, G.D.</td>
<td>2008</td>
<td>Cardiovascular Research 79 (2), pp. 259-268</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
<td>Journal and Pages</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--</td>
<td>------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Applications and limitations of genetically modified mouse models in drug discovery and development</td>
<td>Lin, J.H.</td>
<td>2008</td>
<td>Current Drug Metabolism 9 (5), pp. 419-438</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Protein kinase Cβ deficiency increases fatty acid oxidation and reduces fat storage</td>
<td>Bansode, R.R., Huang, W., Roy, S.K., Mehta, M., Mehta, K.D.</td>
<td>2008</td>
<td>Journal of Biological Chemistry 283 (1), pp. 231-236</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Regulation of hypothalamic malonyl-CoA by central glucose and leptin</td>
<td>Wolfgang, M.J., Seung, H.C., Sidhaye, A., Chohnan, S., Cline, G.</td>
<td>2007</td>
<td>Proceedings of the National Academy of Sciences of the United States of America 104 (49), pp. 19285-19290</td>
<td></td>
</tr>
<tr>
<td>Ref</td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
<td>Journal/Book/Conference</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
<td>--------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Gene expression profiling in livers of mice after acute inhibition of β-oxidation</td>
<td>Shulman, G.I., Lane, M.D.</td>
<td>2007</td>
<td>Genomics 90 (6), pp. 680-689</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Chapter 11 Lipid-Metabolizing Enzymes as Targets for Dyslipidemia and Insulin Resistance</td>
<td>Yeh, V., Judd, A.S., Souers, A.J.</td>
<td>2007</td>
<td>Annual Reports in Medicinal Chemistry 42, pp. 161-175</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>AMPK as a cellular energy sensor and its function in the organism</td>
<td>Miranda, N., Tovar, A.R., Palacios, B., Torres, N.</td>
<td>2007</td>
<td>Revista de Investigacion Clinica 59 (6), pp. 458-469</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Adipose tissue expandability and the metabolic syndrome</td>
<td>Slawik, M., Vidal-Puig, A.J.</td>
<td>2007</td>
<td>Genes and Nutrition 2 (1), pp. 41-45</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Cideb regulates diet-induced obesity, liver steatosis, and insulin sensitivity by controlling lipogenesis and fatty acid oxidation</td>
<td>Li, J.Z., Ye, J., Xue, B., Qi, J., Zhang, J., Zhou, Z., Li, Q., (...)</td>
<td>2007</td>
<td>Diabetes 56 (10), pp. 2523-2532</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
<td>Journal/Issue, Pages</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Cellular membranes, the sites for the antifungal activity of the herbicide sethoxydim</td>
<td>Pakdaman, B.S., Mohammadi Goltapeh, E., Sepehrifar, R., Pouriesa, M., Rahirni Fard, M., Moradi, F., Modarres, S.A.M.</td>
<td>2007</td>
<td>Pakistan Journal of Biological Sciences 10 (15), pp. 2480-2484</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Simultaneous quantification of malonyl-CoA and several other short-chain acyl-CoAs in animal tissues by ion-pairing reversed-phase HPLC/MS</td>
<td>Gao, L., Chiou, W., Tang, H., Cheng, X., Camp, H.S., Burns, D.J.</td>
<td>2007</td>
<td>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 853 (1-2), pp. 303-313</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>In appreciation of Sir Philip Randle: The glucose-fatty acid cycle</td>
<td>Sugden, M.C.</td>
<td>2007</td>
<td>British Journal of Nutrition 97 (5), pp. 809-813</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
<td>Journal</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Thermogenic and metabolic antiobesity drugs: Rationale and opportunities</td>
<td>Clapham, J.C., Arch, J.R.S.</td>
<td>2007</td>
<td>Diabetes, Obesity and Metabolism 9 (3), pp. 259-275</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>AMP-activated protein kinase as a drug target</td>
<td>Hardie, D.G.</td>
<td>2007</td>
<td>Annual Review of Pharmacology and Toxicology 47, pp. 185-210</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
<td>Journal</td>
<td>Pages</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
<td>------------</td>
<td>--</td>
<td>---------------------------</td>
</tr>
<tr>
<td>73</td>
<td>Lipotoxicity and mitochondrial dysfunction in type 2 diabetes</td>
<td>Hesselink, M.K.C., Mensink, M., Schrauwen, P.</td>
<td>2007</td>
<td>Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry 7 (1), pp. 3-17</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Adipocytes as regulators of energy balance and glucose homeostasis</td>
<td>Rosen, E.D., Spiegelman, B.M.</td>
<td>2006</td>
<td>Nature 444 (7121), pp. 847-853</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth</td>
<td>DeBerardinis, R.J., Lum, J.J., Thompson, C.B.</td>
<td>2006</td>
<td>Journal of Biological Chemistry 281 (49), pp. 37372-37380</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>A homogeneous scintillation proximity assay for acetyl coenzyme A carboxylase coupled to fatty acid synthase</td>
<td>Seethala, R., Ma, Z., Golla, R., Cheng, D.</td>
<td>2006</td>
<td>Analytical Biochemistry 358 (2), pp. 257-265</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>The messenger RNA profiles in liver, hypothalamus, white adipose tissue, and skeletal muscle of female Zucker diabetic fatty rats after topiramate treatment</td>
<td>Liang, Y., She, P., Wang, X., Demarest, K.</td>
<td>2006</td>
<td>Metabolism: Clinical and Experimental 55 (10), pp. 1411-1419</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
<td>Journal/Magazine</td>
<td>Volume/Issue</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>86</td>
<td>The fatty acid oxidation pathway as a therapeutic target for insulin resistance</td>
<td>Clapham, J.C., Storlien, L.H.</td>
<td>2006</td>
<td>Expert Opinion on Therapeutic Targets</td>
<td>10 (5), pp. 749-757</td>
</tr>
<tr>
<td>87</td>
<td>Roles for fructose-2,6-bisphosphate in the control of fuel metabolism: Beyond its allosteric effects on glycolytic and gluconeogenic enzymes</td>
<td>Wu, C., Khan, S.A., Peng, L.-J., Lange, A.J.</td>
<td>2006</td>
<td>Advances in Enzyme Regulation</td>
<td>46 (1), pp. 72-88</td>
</tr>
<tr>
<td>90</td>
<td>Effects of (-)-hydroxycitrate on net fat synthesis as de novo lipogenesis</td>
<td>Kovacs, E.M.R., Westerterp-Plantenga, M.S.</td>
<td>2006</td>
<td>Physiology and Behavior</td>
<td>88 (4-5), pp. 371-381</td>
</tr>
<tr>
<td>91</td>
<td>Diabetes mellitus: Complications and therapeutics</td>
<td>Tripathi, B.K., Srivastava, A.K.</td>
<td>2006</td>
<td>Medical Science Monitor</td>
<td>12 (7), pp. RA130-RA147</td>
</tr>
<tr>
<td>93</td>
<td>The role of the liver in lipid metabolism during cold acclimation in non-hibernator rodents</td>
<td>Hauton, D., Richards, S.B., Eginton, S.</td>
<td>2006</td>
<td>Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology</td>
<td>144 (3), pp. 372-381</td>
</tr>
<tr>
<td>96</td>
<td>Influence of laser light on AMPK as a factor in the laser therapy of diabetes</td>
<td>Makela, A.M.</td>
<td>2006</td>
<td>Progress in Biomedical Optics and Imaging - Proceedings of SPIE</td>
<td>6140, art. no. 61400N</td>
</tr>
</tbody>
</table>
Synthesis and structure-activity relationships of \(N\-{\lfloor}2\-\{4\-alkoxyphenoxy\}\} thiazol-5-yl\-1-methylprop-2-ynyl\}carboxy derivatives as selective acetyl-CoA carboxylase 2 inhibitors

Is Dimerization Required for the Catalytic Activity of Bacterial Biotin Carboxylase?

A new way to burn fat

Modulation of fatty acid metabolism as a potential approach to the treatment of obesity and the metabolic syndrome

Kusunoki, J., Kanatani, A., Moller, D.E. 2006 *Endocrine* 29 (1), pp. 91-100

Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis

The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis

Lipotoxicity, overnutrition and energy metabolism in aging

Regulation of acetyl-CoA carboxylase

The human obesity gene map: The 2005 update

Treating the metabolic syndrome using angiotensin receptor antagonists that selectively modulate peroxisome proliferator-activated receptor-γ

Increased malonyl-CoA and diacylglycerol

Kraegen, E.W. 2006 *American Journal of Physiology* -
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Year</th>
<th>Volume, Issue, Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>Recent advances in obesity: Adiposity signaling and fat metabolism in energy homeostasis</td>
<td>Aja, S., Moran, T.H.</td>
<td>Advances in Psychosomatic Medicine 27, pp. 1-23</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>AMPK: A key sensor of fuel and energy status in skeletal muscle</td>
<td>Hardie, D.G., Sakamoto, K.</td>
<td>Physiology 21 (1), pp. 48-60</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Genetics and pathophysiology of obesity</td>
<td>Slawik, M., Beuschlein, F.</td>
<td>Internist 47 (2), pp. 120-129</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Appetite regulatory peptides - Obesity drugs and their targets: Correlation of mouse knockout phenotypes with drug effects in vivo</td>
<td>Powell, D.R.</td>
<td>2006</td>
<td>Obesity Reviews 7 (1), pp. 89-108</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>Inhibition of acetyl-CoA carboxylase isoforms by pyridoxal phosphate</td>
<td>Lee, W.M., Elliott, J.E., Brownsey, R.W.</td>
<td>2005</td>
<td>Journal of Biological Chemistry 280 (51), pp. 41835-41843</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Transgenic animal models for the study of adipose tissue biology</td>
<td>Blüher, M.</td>
<td>2005</td>
<td>Best Practice and Research: Clinical Endocrinology and Metabolism 19 (4), pp. 605-623</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>Tungstate decreases weight gain and adiposity in obese rats through increased thermogenesis and lipid oxidation</td>
<td>Claret, M., Corominola, H., Canals, I., Saura, J., Barcelo-Batllori, S., Guinovart, J.J., Gomis, R.</td>
<td>2005</td>
<td>Endocrinology 146 (10), pp. 4362-4369</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Carnitine palmitoyltransferase-I and regulation of mitochondrial fatty acid oxidation</td>
<td>Kerner, J., Hoppel, C.L.</td>
<td>2005</td>
<td>Monatshefte fur Chemie 136 (8), pp. 1311-1323</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Author(s)</td>
<td>Year</td>
<td>Journal/Citation</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-----------------------------------</td>
<td>------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Acetyl-coenzyme A carboxylase: Crucial metabolic enzyme and attractive target for drug discovery</td>
<td>Tong, L.</td>
<td>2005</td>
<td>Cellular and Molecular Life Sciences 62 (16), pp. 1784-1803</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
<td>Journal/Volume/Issue, Pages</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--------------------------</td>
<td>------</td>
<td>------------------------------</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>Inhibition of fatty acid synthase prevents preadipocyte differentiation</td>
<td>Schmid, B., Rippmann, J.F., Tadayyon, M., Hamilton, B.S.</td>
<td>2005</td>
<td>Biochemical and Biophysical Research Communications 328 (4), pp. 1073-1082</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>Dissipating excess energy stored in the liver is a potential treatment strategy for diabetes associated with obesity</td>
<td>Ishigaki, Y., Katagiri, H., Yamada, T., Ogihara, T., Imai, J., Uno, K., Hasegawa, Y., (...), Oka, Y.</td>
<td>2005</td>
<td>Diabetes 54 (2), pp. 322-332</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>Asymmetric expression of transcripts derived from the divergently oriented ACACA and TADA2L genes</td>
<td>Travers, M.T., Cambot, M., Kennedy, H.T., Lenoir, G.M., Barber, M.C., Joulin, V.</td>
<td>2005</td>
<td>Genomics 85 (1), pp. 71-84</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>Fat to the fire: The regulation of lipid oxidation with exercise and environmental stress</td>
<td>McClelland, G.B.</td>
<td>2004</td>
<td>Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology 139 (3 SPEC.ISS.), pp. 443-460</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
<td>Journal</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>Lipid metabolic enzymes: Emerging drug targets for the treatment of obesity</td>
<td>Shi, Y., Burn, P.</td>
<td>2004</td>
<td>Nature Reviews Drug Discovery 3 (8), pp. 695-710</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>Lipin expression preceding peroxisome proliferator-activated receptor-γ is critical for adipogenesis in vivo and in vitro</td>
<td>Phan, J., Pèterfy, M., Reue, K.</td>
<td>2004</td>
<td>Journal of Biological Chemistry 279 (28), pp. 29558-29564</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Molecular mediators of hepatic steatosis and liver injury</td>
<td>Browning, J.D., Horton, J.D.</td>
<td>2004</td>
<td>Journal of Clinical Investigation 114 (2), pp. 147-152</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>Pharmacological approaches to weight reduction: Therapeutic targets</td>
<td>Korner, J., Aronne, L.J.</td>
<td>2004</td>
<td>Journal of Clinical Endocrinology and Metabolism 89 (6), pp. 2616-2621</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
<td>Journal/Media</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
<td>------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>C75, a Fatty Acid Synthase Inhibitor, Reduces Food Intake via Hypothalamic AMP-activated Protein Kinase</td>
<td>Kim, E.-K., Miller, I., Aja, S., Landree, L.E., Pinn, M., McFadden, J., Kuhajda, F.P., (...), Ronnett, G.V.</td>
<td>2004</td>
<td>Journal of Biological Chemistry 279 (19), pp. 19970-19976</td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme-A carboxylase by haloxyfop and diclofop</td>
<td>Zhang, H., Tweel, B., Tong, L.</td>
<td>2004</td>
<td>Proceedings of the National Academy of Sciences of the United States of America 101 (16), pp. 5910-5915</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Regulation of stearoyl-CoA desaturases and role in metabolism</td>
<td>Ntambi, J.M., Miyazaki, M.</td>
<td>2004</td>
<td>Progress in Lipid Research 43 (2), pp. 91-104</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>Fatty acid-induced insulin resistance: Role of insulin receptor substrate 1 serine phosphorylation in the retroregulation of insulin signalling</td>
<td>Le Marchand-Brustel, Y., Gual, P., Grémeaux, T., Gonzalez, T., Barrès, R., Tanti, J.-F.</td>
<td>2003</td>
<td>Biochemical Society Transactions 31 (6), pp. 1152-1156</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
<td>Journal/Conference</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
<td>-------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Peroxisome proliferator-activated receptors, fatty acid oxidation,</td>
<td>Yu, S., Rao, S., Reddy, J.K.</td>
<td>2003</td>
<td>Current Molecular Medicine 3 (6), pp. 561-572</td>
<td></td>
</tr>
<tr>
<td></td>
<td>steatohepatitis and hepatocarcinogenesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>The carnitine system and body composition</td>
<td>Reda, E., D'Iddio, S., Nicolai, R., Benatti, P., Calvani, M.</td>
<td>2003</td>
<td>Acta Diabetologica 40 (SUPPL. 1), pp. S106-S113</td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and</td>
<td>Abu-Elheiga, L., Oh, W., Kordari, P., Wakil, S.J.</td>
<td>2003</td>
<td>Proceedings of the National Academy of Sciences of the United States of America 100 (18), pp. 10207-10212</td>
<td></td>
</tr>
<tr>
<td></td>
<td>diabetes induced by high-fat/high-carbohydrate diets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Graded activation during exercise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>element-binding protein-1 in liver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>activity in selected tissues of rainbow trout (Oncorhynchus mykiss)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rearrangements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>Fasting plasma triglyceride levels and fat oxidation predict dietary</td>
<td>Ji, H., Friedman, M.I.</td>
<td>2003</td>
<td>Physiology and Behavior 78 (4-5), pp. 767-772</td>
<td></td>
</tr>
<tr>
<td></td>
<td>obesity in rats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>Crystal structure of the carboxyltransferase domain of acetyl-</td>
<td>Zhang, H., Yang, Z., Shen, Y., Tong, L.</td>
<td>2003</td>
<td>Science 299 (5615), pp. 2064-2067</td>
<td></td>
</tr>
<tr>
<td></td>
<td>coenzyme a carboxylase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Author(s)</td>
<td>Year</td>
<td>Journal/Reference</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
<td>------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>SREBP-1 integrates the actions of thyroid hormone, insulin, cAMP, and medium-chain fatty acids on ACCα transcription in hepatocytes</td>
<td>Zhang, Y., Yin, L., Hillgartner, F.B.</td>
<td>2003</td>
<td>Journal of Lipid Research 44 (2), pp. 356-368</td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>Role of AMP-activated protein kinase in leptin-induced fatty acid oxidation in muscle</td>
<td>Minokoshi, Y., Kahn, B.B.</td>
<td>2003</td>
<td>Biochemical Society Transactions 31 (1), pp. 196-201</td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>Crystal structure of carnitine acetyltransferase and implications for the catalytic mechanism and fatty acid transport</td>
<td>Jogl, G., Tong, L.</td>
<td>2003</td>
<td>Cell 112 (1), pp. 113-122</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regulation of appetite and satiety</td>
<td>Katschinski, M.</td>
<td>2002</td>
<td>Aktuelle Ernahrungsmedizin 27 (6),</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Description</td>
<td>Authors</td>
<td>Year</td>
<td>Journal/Proceedings</td>
<td>Pages</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>229</td>
<td>[Regulation von appetit und sättigung]</td>
<td></td>
<td></td>
<td></td>
<td>pp. 375-380</td>
</tr>
<tr>
<td>236</td>
<td>Lessons in obesity from transgenic animals</td>
<td>Arch, J.R.S.</td>
<td>2002</td>
<td>Journal of Endocrinological Investigation 25 (10), pp. 867-875</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase</td>
<td>Hardie, D.G., Pan, D.A.</td>
<td>2002</td>
<td>Biochemical Society Transactions 30 (6), pp. 1064-1070</td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>Malonyl CoA control of fatty acid oxidation in the ischemic heart</td>
<td>Dyck, J.R.B., Lopaschuk, G.D.</td>
<td>2002</td>
<td>Journal of Molecular and Cellular Cardiology 34 (9), pp. 1099-1109</td>
<td></td>
</tr>
</tbody>
</table>

23
Metformin increases AMP-activated protein-kinase activity in skeletal muscle of subjects with type 2 diabetes

Radiochemical malonyl-CoA decarboxylase assay: Activity and subcellular distribution in heart and skeletal muscle

An increase in peroxisomal fatty acid oxidation is not sufficient to prevent tissue lipid accumulation in hHTg rats

Fatty acid regulation of gene expression: A genomic explanation for the benefits of the Mediterranean diet

Skeletal muscle triglycerides: An aspect of regional adiposity and insulin resistance

Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss

Multi-subunit acetyl-CoA carboxylases

A bisubstrate analog inhibitor of the carboxyltransferase component of acetyl-CoA carboxylase

Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle

Effects of dietary copper on the expression of lipogenic genes and metabolic hormones in steers

Understanding adipose tissue development from transgenic animal models

The impact of fatty acid oxidation on energy utilization: Targets and therapy

Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes

Denis McGarry, J. 2002 Diabetes 51 (1), pp. 7-18

A biotin analog inhibits acetyl-CoA

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Year</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>259</td>
<td>Incorporation of bioinformatics exercises into the undergraduate biochemistry curriculum</td>
<td>Feig, A.L., Jabri, E.</td>
<td>Biochemistry and Molecular Biology Education</td>
<td>2002</td>
<td>30</td>
<td>(4)</td>
<td>pp. 224-231</td>
</tr>
<tr>
<td>262</td>
<td>Lipotoxic diseases</td>
<td>Unger, R.H.</td>
<td>Annual Review of Medicine</td>
<td>2002</td>
<td>53</td>
<td></td>
<td>pp. 319-336</td>
</tr>
<tr>
<td>263</td>
<td>Control of energy homeostasis and insulin action by adipocyte hormones: Leptin, acylation stimulating protein, and adiponectin</td>
<td>Havel, P.J.</td>
<td>Current Opinion in Lipidology</td>
<td>2002</td>
<td>13</td>
<td>(1)</td>
<td>pp. 51-59</td>
</tr>
<tr>
<td>264</td>
<td>Weight-loss drugs and supplements: Are there safer alternatives?</td>
<td>Brudnak, M.A</td>
<td>Medical Hypotheses</td>
<td>2002</td>
<td>58</td>
<td>(1)</td>
<td>pp. 28-33</td>
</tr>
<tr>
<td>266</td>
<td>Fat in all the wrong places</td>
<td>Friedman, J.</td>
<td>Nature</td>
<td>2002</td>
<td>415</td>
<td>(6869)</td>
<td>pp. 268-269</td>
</tr>
</tbody>
</table>

25
<table>
<thead>
<tr>
<th>No.</th>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Year</th>
<th>Journal/Book</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>270</td>
<td></td>
<td>alternatively spliced acetyl-CoA carboxylase-α mRNAs encoding</td>
<td>M.T.</td>
<td></td>
<td>Endocrinology 27 (3), pp.</td>
<td>349-356</td>
</tr>
<tr>
<td></td>
<td></td>
<td>isoforms with or without an eight amino acid domain upstream of the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ser-1200 phosphorylation motif in the mammary gland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>272</td>
<td></td>
<td>In vivo drug target discovery: Identifying the best targets from the</td>
<td>Walke, D.W., Han, C., Shaw, J.,</td>
<td>2001</td>
<td>Current Opinion in Biotechnology</td>
<td>626-631</td>
</tr>
<tr>
<td></td>
<td></td>
<td>genome</td>
<td>Wann, E., Zambrowicz, B., Sands,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>273</td>
<td></td>
<td>Nonalcoholic steatosis and steatohepatitis III, Peroxisomal β-</td>
<td>Reddy, J.K.</td>
<td>2001</td>
<td>*American Journal of Physiology -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>oxidation, PPARα, and steatohepatitis</td>
<td></td>
<td></td>
<td>Gastrointestinal and Liver</td>
<td>44-6, pp. G1333-G1339</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short-term and long-term regulation of food intake and energy</td>
<td></td>
<td></td>
<td></td>
<td>963-977</td>
</tr>
<tr>
<td></td>
<td></td>
<td>homeostasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>277</td>
<td></td>
<td>Chewing the fat - ACC and energy balance</td>
<td>Ruderman, N., Flier, J.S.</td>
<td>2001</td>
<td>Science 291 (5513), pp.</td>
<td>2558-2559</td>
</tr>
</tbody>
</table>

Cited 5 times

- Peroxisomal-mitochondrial oxidation in a rodent model of obesity-associated insulin resistance
 - Year: 2007
 - Journal: *American Journal of Physiology - Endocrinology and Metabolism*

- Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury
 - Article: Starkov, A.A., Chinopoulos, C., Fiskum, G.
 - Year: 2004
 - Journal: *Cell Calcium* 36 (3-4), pp. 257-264

- The interaction of acyl-CoA with acyl-CoA binding protein and carnitine palmitoyltransferase I
 - Article: Abo-Hashema, K.A.H., Cake, M.H., Lukas, M.A., Knudsen, J.
 - Year: 2001

- Evidence for triacylglycerol synthesis in the lumen of microsomes via a lipolysis-esterification pathway involving carnitine acyltransferases
 - Article: Abo-Hashema, K.A.H., Cake, M.H., Power, G.W., Clarke, D.
 - Year: 1999
 - Journal: *Journal of Biological Chemistry* 274 (50), pp. 35577-35582

- Evaluation of the affinity and turnover number of both hepatic mitochondrial and microsomal carnitine acyltransferases: Relevance to intracellular partitioning of acyl-CoAs
 - Article: Abo-Hashema, K.A.H., Cake, M.H., Lukas, M.A., Knudsen, J.
 - Year: 1999
 - Journal: *Biochemistry* 38 (48), pp. 15840-15847

Cited 9 times

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>The biochemistry of hypo- and hyperlipidemic fatty acid derivatives: Metabolism and metabolic effects</td>
<td>Bremer, J.</td>
<td>2001</td>
<td>Progress in Lipid Research 40 (4), pp. 231-268</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Molecular enzymology of carnitine transfer and transport</td>
<td>Ramsay, R.R., Gandour, R.D., Van Der Leij, F.R.</td>
<td>2001</td>
<td>Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology 1546 (1), pp. 21-43</td>
<td></td>
</tr>
</tbody>
</table>

Cited 28 times

1. **Liver lipid metabolism**

2. **Diacylglycerol acyltransferases: Potential roles as pharmacological targets**

3. **CPT1c is localized in endoplasmic reticulum of neurons and has carnitine palmitoyltransferase activity**

4. **Membrane topology and identification of key functional amino acid residues of murine Acyl-CoA:diacylglycerol acyltransferase-2**

5. **Overexpression of rat long chain acyl-CoA synthetase 1 alters fatty acid metabolism in rat primary hepatocytes**

6. **Short-term overexpression of DGAT1 or DGAT2 increases hepatic triglyceride but not VLDL triglyceride or apoB production**

7. **Adaptation of enterocytic Caco-2 cells to glucose modulates triacylglycerol-rich lipoprotein secretion through triacylglycerol targeting into the endoplasmic reticulum lumen**

8. **The 2-series prostaglandins suppress VLDL secretion in an inflammatory condition-dependent manner in primary rat hepatocytes**

9. **Accumulation of long-chain acylcarnitine and 3-hydroxy acylcarnitine molecular species in diabetic myocardium: Identification of alterations in mitochondrial fatty acid processing in diabetic myocardium by shotgun lipidomics**
| 18. | The liver isoform of carnitine palmitoyltransferase 1 is not targeted to the endoplasmic reticulum | Broadway, N.M., Pease, R.J., Birdsey, G., Shayeghi, M., Turner, N.A., Saggerson, E.D. | 2003 | Biochemical Journal 370 (1), pp. 223-231 |
| 20. | Differential effects of fenofibrate or simvastatin treatment of rats on hepatic microsomal overt and latent diacylglycerol acyltransferase activities | Waterman, I.J., Zammit, V.A. | 2002 | Diabetes 51 (6), pp. 1708-1713 |
22. Activities of overt and latent diacylglycerol acyltransferases (DGATs I and II) in liver microsomes of ob/ob mice

23. Dietary L-carnitine stimulates carnitine acyltransferases in the liver of aged rats

24. Cloning of DGAT2, a Second Mammalian Diacylglycerol Acyltransferase, and Related Family Members

25. The biochemistry of hypo- and hyperlipidemic fatty acid derivatives: Metabolism and metabolic effects

26. Hypolipidemic effect of NK-104 and other 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors in guinea pigs

27. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells
 Wu, C.C., Howell, K.E., Neville, M.C., Yates III, J.R., McManaman, J.L. 2000 Electrophoresis 21 (16), pp. 3470-3482

28. Triglyceride synthesis: Insights from the cloning of diacylglycerol acyltransferase

Cited 59 times

<table>
<thead>
<tr>
<th>Article</th>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
<td>Journal/Publication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>--------------------------</td>
<td>------</td>
<td>--------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Mitochondrial and nuclear inheritance in an androgenetic line of rainbow trout, Oncorhynchus mykiss</td>
<td>Brown, K.H., Thorgaard, G.H.</td>
<td>2002</td>
<td>Aquaculture 204 (3-4), pp. 323-335</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Exploring the genetic background of stress using isogenic progenies of common carp selected for high or low stress-related cortisol response</td>
<td>Tanck, M.W.T., Claes, T., Bovenhuis, H., Komen, J.</td>
<td>2002</td>
<td>Aquaculture 204 (3-4), pp. 419-434</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan</td>
<td>Arai, K.</td>
<td>2001</td>
<td>Aquaculture 197 (1-4), pp. 205-228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
<td>Journal/Conference</td>
<td>Volume/Issue/Number</td>
<td>Pages</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--</td>
<td>--------</td>
<td>--</td>
<td>----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>31</td>
<td>Isogenic transgenic homozygous fish induced by artificial parthenogenesis</td>
<td>Nam, Y.K., Cho, Y.S., Kim, D.S.</td>
<td>2000</td>
<td>Transgenic Research</td>
<td>9 (6)</td>
<td>463-469</td>
</tr>
<tr>
<td>33</td>
<td>Ultraviolet-irradiated spermatozoa activate oocytes but arrest preimplantation development after fertilization and nuclear transplantation in cattle</td>
<td>Bordignon, V., Smith, L.C.</td>
<td>1999</td>
<td>Biology of Reproduction</td>
<td>61 (6)</td>
<td>1513-1520</td>
</tr>
<tr>
<td>34</td>
<td>The anti-estrogenicity of Ah receptor agonists in carp (Cyprinus carpio) hepatocytes</td>
<td>Smeets, J.M.W., Van Holsteijn, I., Giesy, J.P., Van Den Berg, M.</td>
<td>1999</td>
<td>Toxicological Sciences</td>
<td>52 (2)</td>
<td>178-188</td>
</tr>
<tr>
<td>37</td>
<td>Estrogenic potencies of several environmental pollutants, as determined by vitellogenin induction in a carp hepatocyte assay</td>
<td>Smeets, J.M.W., Van Holsteijn, I., Giesy, J.P., Seinen, W., Van Den Berg, M.</td>
<td>1999</td>
<td>Toxicological Sciences</td>
<td>50 (2)</td>
<td>206-213</td>
</tr>
<tr>
<td>40</td>
<td>Production of androgenetic haploids in zebrafish with ultraviolet light</td>
<td>Ungar, A.R., Helde, K.A., Moon, R.T.</td>
<td>1998</td>
<td>Molecular Marine Biology and Biotechnology</td>
<td>7 (4)</td>
<td>320-326</td>
</tr>
<tr>
<td>44.</td>
<td>Feminisation of young males of the common carp, Cyprinus carpio, exposed to 4-tert-pentylphenol during sexual differentiation</td>
<td>Gimeno, S., Komen, H., Gerritsen, A.G.M., Bowmer, T.</td>
<td>1998</td>
<td>Aquatic Toxicology 43 (2-3), pp. 77-92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.</td>
<td>Genomic identification of catfish species by polymerase chain reaction and restriction enzyme analysis of the gene encoding the immunoglobulin M heavy chain constant region</td>
<td>Thongpan, A., Mingmuang, M., Thinchant, S., Cooper, R., Tiersch, T., Mongkonpunya, K.</td>
<td>1997</td>
<td>Aquaculture 156 (1-2), pp. 129-137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.</td>
<td>Disruption of sexual differentiation in genetic male common carp (Cyprinus carpio) exposed to an alkylphenol during different life stages</td>
<td>Gimeno, S., Komen, H., Venderbosch, P.W.M., Bowmer, T.</td>
<td>1997</td>
<td>Environmental Science and Technology 31 (10), pp. 2884-2890</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>